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AbstracL We propose a simple and compact method for deriving qavtum groups acting 
on Manin's q- and h-planes. Using this method, we classify all the rigid motions of the 
tw-dimensional quantum planes Requiring that these inhomogenous transformations preserve 
differential strucm of the quantum plane, we obtain two distinct inhomogenous quantum groups 
for the q-plane and one previously unknown inhomogenous quanbm group for the h-plane, 
IGLh.h'(Z). 

1. Introduction 

Recently, efforts have been made to construct inhomogeneous quantum groups as 
inhomogeneous automorphisms of quantum spaces. Two-dimensional quantum planes, the 
corresponding quantum groups of automorphisms and their differential calculi have been 
studied by various people [1,21. As is well known, there exist only two classes of non- 
degenerate quantum planes: the q-plane and the la-plane. The former is well studied and 
the latter has been studied by various authors [l-81. 

If G is a semisimple group that acts on BN or CN, then the corresponding inhomogeneous 
group I G  is the semidirect product of G and RN or CN. It is not semisimple since it contains 
an abelian subgroup isomorphic to RN or CN; its quantization is not straightforward. Since 
some of the very important groups in physics are inhomogeneous, such as the Poincark 
group, it is important to study their quantization. 

There is now an expanding literature on the quantization of inhomogeneous groups. 
Woronowicz [9] used the contraction procedure, whereas Schlieker et al [ 101 introduced a 
method that uses an R matrix. This method was subsequently put into a more transparent 
formulation by Castellani [121 and may be called the 'projection' method. Rembielinski 
[ l l ]  used another method to derive the inhomogeneous quantum group that acts on Manin's 
q-plane. 

The purpose of this article is to study the structure of the inhomogeneous quantum groups 
acting on two-dimensional quantum planes from very basic requirements. We see that the 
requirement of invariance of the quantum-plane's defining relation leads to an R matrix 
and that the commutation relations among homogeneous and inhomogeneous sectors are 
more general than those given by the formalism of Schlieker et al [lo] and Castellani [12]. 
Although we have considered the two-dimensional case, the resulting R-matrix formalism 
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holds for any dimension. Now, if one demands that the inhomogeneous transformations 
also preserve the differential structure of the corresponding quantum plane, then the Hopf 
algebra becomes smaller. For the q-plane, there exist only two distinct differential structures 
1131 resulting in two different inhomogeneous quantum groups. For the h-plane, there is a 
known differential structure [6] which leads to IGLh,+(2).  

2. A non-degenerate quantum plane and its inhomogeneous automorphism 

Consider a quantum plane with coordinates ( x ,  y )  = ( x l ,  x z )  and a quadratic relation which 
we write as 

Cijxix, = 0 or X'CX = 0 (2.1) 

where 

C is an invertible matrix and the superscript 't' stands for transposition. We call this 
quantum plane %*[cl. 

Now, consider the following inhomogeneous transformation: 

x H x' =ax  + b y + u  y H y' = cx +dy  + u. (2.3) 

Introducing quantum manix M and translator U ,  we write this in a more convenient way: 

M=(; ;) U=(;) Xk-+X'=MX+U. (2.4) 

Demanding that X' satisfies the same quadratic relation as X, i.e. X"CX' = 0, one gets 
the following relation: 

X'M'CMX + (X 'M'CU + U'CMX) + U'CU = 0. (2.5) 

Now, quadratic and linear terms should be zero independently. First, consider the quadratic 
term 

X'M'CMX = 0. (2.6) 

Comparing this with (2.1) leads us to write 

M'CM = CU (2.7) 

where U is a quadratic in the generators a, b, c and d and is called the 'quantum determinant' 
of quantum matrix M. The reason for this terminology will be clear soon. The above 
relations give the definition of U and three commutation relations among the entries of M. 
Now, for the linear terms, since x and y are independent variables and commute with the 
generators a, b, c, d,  U and U, we conclude that 

(M'CU)! + (U'CM)i = 0. (2.8) 
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This relation gives us some of the commutation relations between the entries of M and U .  
Finally, we get 

U'CU = 0. (2.9) ' 

This simply states that ( U ,  U) have the same commutation relations as ( x ,  y ) ,  however note 
that, while ( x ,  y) commute with entries of the quantum matrix M, ( U ,  U) do not. Using 
(2.7)-(2.9), one can prove that if (M. U) and (M',  U') are two pairs satisfying (2.7)-(2.9), 
then (MM', MU' + U) is also such a pair provided that all entries of (M. U) mutually 
commute with all entries of (MI, U'). 

We want to endow our algebra with a coproduct A and counity E .  We define them as 

A(Mi,) = Mik @ Mkj A(U,) = Mik 8 + U, @ i d  (2.10) 

E ( M , j )  = 8, dui) = 0. (2.11) 

If we put the generators in a 3 x 3 matrix 

(2.12) 

then expressions (2.10) and (2.11) seem more familiar. 
commutation relations (2.7)-(2.9), one can prove that 

Using these definitions and 

A(u) = U @ U  ( ( U )  = 1 (2.13) 

u ( M  M')  = u(M) u ( M 3  (2.14) if [Mi,, ML,] = 0. 

These properties justify calling U the 'quantum determinant' of matrix M .  

end, we assume the existence of an inverse for (r and define 
For this algebra to be a Hopf algebra, we have to endow it with an antipode. To this 

y ( M ) 2 f C - b - I M ' C .  (2.15) 

It is clear from (2.7) that y ( M ) M  = 1. But M y ( M )  = 1 only if we have 

uMu- 'C-~M'C = ul .  (2.16) 

To complete the commutation relations in such a way that equation (2.16) is satisfied, 
we consider the following mapping: 

g H ugu-' (2.17) 

which is an automorphism of our algebra. This mapping commutes with the following 
rescaling: 

g E la.  b, c, d ,  U ,  U ]  

(M. U) H (M, AU) A. E C (2.18) 

which is also an automorphism of the algebra. Now if we assume that (2.17) is a linear 
transformation in the generator space then we conclude that it does not mix homogeneous 
and inhomogeneous generators. 
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A linear transformation of generators that does not mix homogeneous and inhomoge- 
neous generators may be written as 

M H M' = Eij,.eijMe,, U H U' = FU (2.19) 

where ejj is a matrix with 1 in the ith row and jth column and zero otherwise; 
(ejj)," = Sj,Sj,. Now we demand that this linear transformation respect the coproduct 
A and the counity G. After some calculations, one concludes that the most general linear 
transformation of generators that does not mix homogeneous and inhomogeneous generators 
and is compatible with the Hopf structure of the algebra d 2 [ C ]  is of the following form for 
an invertible matrix S and free parameter 01: 

M H SMS-' U H USU. (2.20) 

We conclude that (2.16) becomes 

S M S - ~ C - ~ M ~ C  =d. (2.21) 

This gives us the remaining relations among the entries of M and may be written as 

MDM' = DU (2.22) 

where 

D%'(CS)-'.  (2.23) 

Now we search for S. First, observe that, since (2.17) is an automorphism of our algebra, 
it must be true that 

oM'o- 'CoMo-'  = oc (2.24) 

leading to 

M'(S'CS)M = (S'CS)o. (2.25) 

With the same reasoning, we obtain 

U'(S'CS)U = 0 

(S-"M'S'CSu); + (U'S'CSMS-')i = 0. 

(2.26) 

(2.27) 

Comparing equations (2.25). (2.26) with (2,7), (2.9). we deduce that S must be such that 

S'CS = f?c (2.28) 

for a free parameter f?. Note that S and S-l appear simultaneously in (2.21) so we can set 

In summary, given an invertible 2 x 2 matrix C ,  one can define a quadratic quantum 
p = 1 .  

plane D2[C] by relation @.I), where D is given by (2.23) and S is a matrix that satisfies 

SICS = c. (2.29) 
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The quantum group whose action on %*[Cl is given by (2.3) has the following Hopf 
structure: 
(i) Commutation relations 

(ii) Coproduct 

(iii) Counity 

€ ( M ( j )  = & j  E(U,) = 0. 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

(iv) Antipode 

y(M) = C-'u-1M'C. (2.36) 

Note that since ( M ,  U) . (M' ,  U')  = (MM' .  MU'+U), we have (M, U ) . ( M - ' ,  -M- 'U)  = 
(1,O). This means that the antipode of the whole algebra is 

(M, U )  H (mf), -y(M)U). (2.37) 

The algebra &[C] has the following braid matrix: 

&jmn = & m s j n  + M D i j C m n  (2.38) 

where ~r. is a constant obtained by checking the Yang-Baxter equation for the corresponding 
R mattix (cf [21) 

(2.39) der 
Ir. = 1/2 pJpi-4 - P I  p = tr(CD').  

The commutation relations of the generators may be written as 

(2.40) 

(2.41) 

(2.42) 

It can be shown that these commutation relations are consistent with the coproduct (2.10) and 
counity (2.1 1). Although we obtained these relations by considering the two-dimensional 
case (2.40). (2.41) and the relevant Hopf structure, equation (2.33)-(2.37) is valid for any 
dimension. Note that (2.41) is a more general relation than those given in [lo, 121. 
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Now we look at the effect of a change of coordinates in the quantum plane W2[C]. Any 
invertible 2 x 2 mahix g defines a change of coordinates 

g E GL(2,C)  : X H X'= g X .  (2.43) 

It is easy to see that X"C'X' = o if C' = g-1'cg-L. The quantum makix M' acting on 
this plane is 

M' = gMg-'  (2.44) 

while S' = gSg-I. This means that d2[C] and A2[C'l are equivalent if C' = g-"Cg-'. 
So, it is natural to define an equivalence relation 

if C' = g-"Cg-' for some invertible g. (2.45) W2[C] - %*[C'] 
A2[Cl * A*[C'I 

C completely specifies a quadratic quantum plane and the corresponding quantum group. 
Therefore, the set that counts the different quantum planes is GL(2, C)/(C - C'). It can 
be shown that 

Note that by rescaling, k can be set equal to one, whenever k # 0. Therefore, we conclude 
that there exist only two different quantum planes: the q-plane and the h-plane. Now we 
derive their inhomogeneous quantum groups. 

2.1. q-plane 

For this plane, we have 

e = (  -4 0 0 1). 

Solving equation (2.29) for S and writing (2.23) for D ,  one gets 

(2.47) 

(2.48) 

resulting in the following commutation relations: 

ac = qca 

ab = qp'ba cd = qp'dc cb  = p'bc U = a d  - qcb 

(au + uc) - q(cu + vu) = 0 

bd = qdb  [ a ,  d ]  = qcb - q-'bc 
(2.49) 

dcf 

(bu + ud) - q(du + ub) = 0 (2.50) 

uu = quu (2.51) 

mu = cupua u u  = lYp-'uu. (2.52) 

This is Rembielinski's 1GL(2)q,s,p(2) if we set p z  = sq-2 and OL = p-'s"'zq (cf [ll]). 
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2.2. h-plane 

For this plane, we have 

c = ( o  -1 -h 1 ) .  

Solving equation (2.29) for S and writing (2.23) for D, one obtains 

s = ( o  1 h ’ - h  ) D=(-,”’ i’) 
resulting in the following commutation relations: 

[d. b]  = h(u - d2)  

[b. cl = h‘ac + hcd 

[a, d ]  = hdc - h‘ac 

[b,  a ]  = h’(a2 - U )  

2 [a ,  c ]  = hc 

[d .  cl = h‘c2 

a = a d  - c b - h c d  del 

[b ,  VI + [U. dl = hld,  uHa, U ]  + [U, cl = h(c,  U) 
2 uu - uu = hU 

au = oI(u + (h‘ - h)u)u U U  = avu. 

We call this quantum group IGL(2)h,b.,.. 

3. Differential structures 

_____ 

7109 

(2.53) 

(2.54) 

(2.55) 

(2.56) 

(2.57) 

(2.58) 

The algebra A2[C] i s  the quantum symmetry of the quantum plane !X2[C]. This means that 
relation (2.1) is preserved under transformation (2.4). We extend the transformation to the 
whole differential structure as 

We assume that the co-plane, spanned by the partial derivatives aj, also satisfies a quadratic 
relation 

ai q j a j  = 0. (3.2) 

Requiring that (3.2) be covariant under quantum transformations (3.1) and that Mij satisfy 
no further relations to those of (2.40). we find that 

D’ = D‘ (3.3) 

where D is given by (2.23). Furthermore, arguments similar to those used in the previous 
section lead to the existance of the matrix Sjj,~ such that 

aiaj = ~ ~ ~ , ~ ~ a ~ a ~  (3.4) 
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and 

with p given as before. Note that expression (3.5) can be rewritten in terms of a permutation 
matrix P 

s = P m  (3.6) 

where B is given by (2.38) [14,15]. To fully determine the differential structure, we ought 
to give commutation relations among the coordinates of the plane and the co-plane 

(3.7) a.x.  - 8.. 
j I - j r  + Qjjm.i lxmai .  

All the other relations (involving dx') will be determined by Q i j , ~ ,  where Q has to satisfy 
certain relationships as well as the (Braid) equation [15] 

where BIZ = U @ 1, etc. Requiring that (3.7) remain covariant under transformations given 
by (3.1). we find that 

and 

& i i . j n M k i U i  U j M k n .  (3.12) 

Therefore, if M i j  satisfy no further conditions than those of (2.40). we observe that Q 
should be proportional to B .  The constant of proportionality is fixed by (3.8) 

(3.13) 

where p ,  p and B are given by (2.38) and (2.39). "his fixes the differential structure 
and gives the standard differential structure for the q-plane [I41 and the h-plane [6]. 
Furthermore, we observe that the covariance of the differential structure has produced 
relations stronger than those of (2.42). We have, thus, reduced d2[C] to a smaller algebra 
B2[C], which we believe is the appropriate inhomogeneous quantum group. 
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3.1, q-plane 

The standard differential structure on Manin’s q-plane is given by 

x dx = q2p2dXX 

ydx = qp’dx y 

x d y  = (q2p2 - l ) d x  y + 4 dyx 
(3.14) 

ydy = q2p2dy y 

dx dy = -q-’p-’ dy dr dx2 = 0 dy2 = 0. (3.15) 

Equations (3.14) and (3.15) are consistent with the inhomogeneous quantum group 
IGL,,p(2): 

2 2  u a  = q p a u  

uc = (q2p2 - 1)av + qcu 

va = qp au 

uc = q p cu 

ub = q2p2bu 

ud = (q2p2 - 1)bu + qdu 
(3.16) 

2 

2 2  

ub = qp2bv 

ud = q2p2du. 

Rembielinski [ I l l  derived two quantum groups IGL&(2). Our result can be transformed 
to IGL;,,(2) by setting s = q2p2. It is interesting to note that IGLz,(2) and IGL;,,(2) are 
isomorphic to each other. The isomorphism is given by 

or in the language of equivalence relation (2.45), there exists a matrix 

(3.17) 

(3.18) 

that relates these two quantum groups. Also, note that two roots of equation (2.39) result 
in two equivalent quantum groups, described above. 

3.2. h-plane 

A differential structure for the h-plane has been obtained in [6] 

[ x ,  dx] = h ’ ( d y ~  + hdy y - dx y) [ x ,  dy] = hdy y 
(3.19) 

[Y, d x l =  -hdy Y 

d x d y + d y d x = O  d y 2 = 0  dx2 = h’dxdy. (3.20) 

Demanding that transformation (3 .1)  preserves this differential structure leads to (2.55), 
(2.57) and the following relations: 

C Y .  d ~ l =  0 

[U. a ]  = h’(cu + hcu - au) 
[u,c] = hcu 

[U, a] = -hcv 

[U, b] = h‘(du f hdv - bu) 

[u,d] = hdv 
(3.21) 

[U, b] = -hdu 

[U. cl = 0 [U. d] = 0. 

These complete the commutation relations for IGLh.hC(2). 
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4. Discussion 

In summary, we have shown that the quantum plane, as chnracterizcd by matrix C, admits 
a unique quantum group of rigid transformations d2[C], and, further, requiring that the 
differential structure be covariant leads to a smaller algebra @[Cl. Thus, a classification 
of the quantum plane. its rigid motion and differential calculus can be performed in terms 
of the equivalance classes of C. This leads to only two distinct types of quantum planes; 
the q-plane and the h-plane. and their respective differential structures. 

In the classical limit, translations form an abelian subgroup within the group of 
inhomogeneous transformations. However, in the quantum case, this is not true. Setting 
M equal to unity leads to inconsistency among (2.40H2.42). The corresponding consistent 
subgroup results from taking a diagonal M. In the classical limit, this subgroup involves 
scalings and translations. If we restrict our attention to this limited set of transformations, 
an alternative quantum group /RL,,,s,,(2) exists [ l t ] ,  which is a subgroup of d2[C] but not 
of t32[C]: 

ad = da (4.1 ) 

ua  = r au  

a u  =qua du = s- 'vd .  

ud = qdu (4.2) 

(4.3) 

The differential structure is 

x d x = r d x x  x d y = q d y x  (4.4) 

y d x  = q- 'dry y d y = s d y y  (4.5) 

d x d y = - q d y d r  d x 2 = 0  d y 2 = 0 .  

In conclusion, we note that this differential structure, which is consistent with /RLq,,,,(2), 
is the second differential structure given in 1131. An alternative differential structure has 
become possible because now M satisfies further conditions and has fewer independent 
elements. 
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